

CONFERENCE about opportunities for small wind turbines in urban areas: Recommendations for the SWIP Project Brussels 11 May 2017

IEA Task 27: Responding to challenges for small wind uptake

Ignacio Cruz

CIEMAT

OA IEAWIND Task 27

Low rise buildings? Lowest Prices ARE JUST THE BEGINNING...

Medium size wind turbines in urban environment?

iea wind

High rise buildings?

Content

Reasons to use small wind

Small Wind Challenges

Reasons to use small wind

- ➤ The demand for electricity in urban areas will grow rapidly. (urbanization movement, electrical heating and cooling, electrical vehicles, etc.).
- ➤ Buildings consume approximately 40% of the total energy consumption.
- Trends are going to low carbon/carbon neutral buildings.
- ➤ Interest in renewable energy generation in urban areas is growing and small wind power could one possible solution.
- >but there are still large uncertainties in expected output of wind energy in urban areas.

Small Wind Challenges

- Small wind requires cost reduction.
- Safe and liable design. Guaranties.
- Cost competitive wind resource assessment procedures.
- Simplicity and reduced O&M cost.
- Silent operation is mandatory.
- Energy efficiency.
- > Feasibility.
- New applications: High turbulent sites -> Urban and peri-urban sites. Difficulty in accurately predicting small wind turbine production due to the impact of the site turbulence.
- Current policies, in special regarding permitting, are in general obstructional.
- > Social aspects: building owner, tenants, neighbors, visual effects

Small wind cost reduction

- > Turbines design simplification.
 - > HAWT vs VAWT.
 - HAWT Upwind vs downwind turbines.
 - Pitch vs stall regulated
 - > Self-erected or fix towers.
- Mass production (strongly dependent) on the development markets and/or support schemes).
- Increase of the accuracy of wind assessment procedures.
- Standarisation of components (generator, power converter)
- Refinement of the already existing standards for small wind.

Upwind

or

Downwind

or

Small wind safe and liable design

- Design must be adapted to site conditions. (Classes adaptation)
- Design must be verified by modelling and testing. Customer label based on test could be useful
- ➤ Need for small wind turbine power curves tested according to adequate standard procedures.
- Improvement of existing standards.

 Measurements at low turbulence sites so no guarantees for urban performance.
- > Installation site may be need to be a compromise.

Cost competitive wind resource assessment

- > Wind resource is absolutely site specific.
- > Development of cost competitive procedures for wind resource assessment.
- At least 3 months measurements wind speed & wind direction are required but measurement is difficult. Cup anemometers don't respond well to high turbulence, non-horizontal winds. Other options costly or experimental.
- > Development of new tools including effect of turbulence produced by different shape obstacles.

Wind resource assessment in built environment

- > The built environment has big effect on performance.
- Great care should be taken in selecting suitable sites for building-mounted turbines.
- Wind atlas available not ideal for urban wind resource assessment.
- ➤ There are still developed few "Wind City maps"
- > Identification of the flat roofs with favorable environment
- Definition of a 'sensitive perimeter' depending on the environment
- Checking the local planning rules/standards
- CDF calculations to locate the speed-up/down zones and obstacle correction coefficients
- ➤ Procedure to downscale accurately the local wind atlas. Commercial tools generally overestimate wind resource in high turbulent areas.
- Predict power production for different locations on the building before to select site and height.
- > Identifying the proper location on the roof is critical

Barcelona Wind City map

MIT Boston (US)

London (UK)

Simplicity and reduced O&M cost

- User does not want complex solutions.
- ➤ O&M costs must be reasonable. One visit/year should be enough.
- Turbulence has to be taken into account for reliable designs (Fatigue, life time).
- Existing standards uses I₁₅ = 0.18 for design.
- ➤ I15 or I5 or TKI ?

Silent operation

- Acoustic noise emissions and vibrations must be reduced.
- New low noise blade designs.
- Direct drive designs or gear?
- Furling regulation must be avoided.

Energy efficiency

- Adequate turbine siting procedure.
 - ➤ Yields in urban areas likely to be low —careful site selection required
- Reasonable wind turbine yield with moderate wind resources.
 - > Small wind turbine power performance
- Energy yield measurements as a "kind of certification"
- Energy balance: electricity generation versus demand (energy saving strategy -> self consumption).

New applications: High turbulent sites

- Wind speed-up effect seen above isolated house reduced when house in an urban area
- Flatter roof buildings tend to give greater wind speedup than pitched roof
- Siting on house critical –must be above roofline.
- Onsite measurement campaigns urgently needed to validate predictions
- Analyze impact of turbulence levels on turbines
- Building integration: load, force, vibrations, contact sound,
- > Regulations, permitting, accessibility, ...

Conclusions

- ➤ Sufficient wind resources exist in many urban areas for wind energy generation but each building had its own specific set of wind characteristics.
- ➤ Wind around buildings difficult to generalize: very sensitive to geometry and wind direction
- > Adequate measurement is difficult.
- ➤ Power performance of standards wind turbines in high turbulent sites is lower than open sites.
- > Some wind turbine designs can improve the performance
- "Users must look for good wind resources and good wind turbines". Best practices, case studies and RP are required

IEA wind Task 27

Adequate wind resource assessment

Adequate Wind Turbine characterization

Optimal Wind turbine sitting

Thank You for your attention

ignacio.cruz@ciemat.es

